

NS4820 单通道 G 类恒定输出音频功率放大器

1 特性

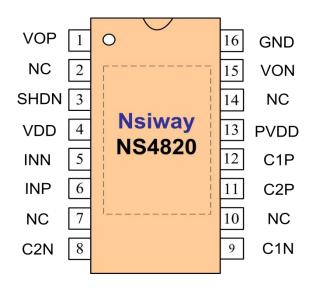
- 输出功率: 防破音模式: 3.0W 不防破音模式: 3.5W
- 内置电荷泵电源系统
- 最大输出功率 P_O=3.5W
 (R_L=4Ω, VDD=4.2V, THD+N=10%)
- 低 THD+N=0.022% (f=1kHz, R_L=4Ω, P_O=0.5W, VDD=3.8V)
- 内置热保护和 VDD 欠压保护功能
- 内置 Pop 和 Click 噪声抑制
- 高抗射频干扰能力
- 一线脉冲控制
- ESOP16 封装

3 应用范围

- 智能音响
- 便携媒体播放器

4 应用电路

2 说明


NS4820 是一款带有自动增益控制 (AGC)功能、 內置高效电荷泵升压电源的免滤波器G 类音频功率 放大器。芯片持续地检测输出功率并相应调整内部 增益,以避免扬声器长时间的过载。

内部集成的电荷泵可以为功放的输出级产生5.9V的供电电压。在 4Ω负载和锂电池 4.2V供电条件下,可以持续输出 3W的恒定功率(THD+N=1%)。NS4820最高效率高达 76%,极大延长了播放音乐时电池的续航时间。

5 管脚配置

NS4820 ESOP16 的俯视图如下图所示:

NS4820 管脚说明:

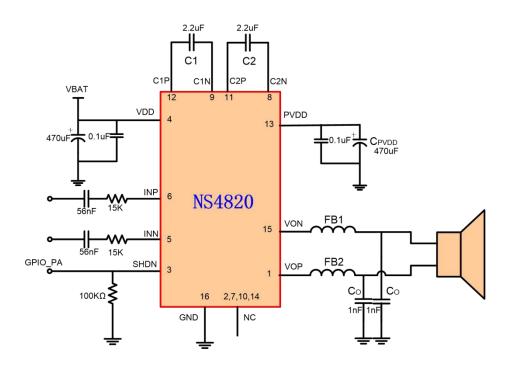
编号	管脚名称	管脚描述			
1	VOP	音频放大器输出正端			
3	SHDN	一线脉冲控制端			
4	VDD	电源			
5	INN	音频信号输入负端			
6	INP	音频信号输入正端			
2,7,10,14	NC	-			
8	C2N	电荷泵 C2 负端			
9	C1N	电荷泵 C1 负端			
11	C2P	电荷泵 C2 正端			
12	C1P	电荷泵 C1 正端			
13	PVDD	音频功放级电源			
15	VON	音频放大器输出负端			

丁力11人		
		1.1
16	GND	地

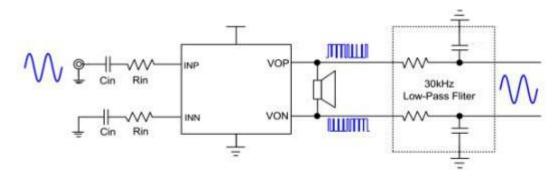
6 极限工作参数

THE STATE OF THE S	最小	最大	单位	
供电电压范围	VDD	-0.3	5	V
输入电压范围	INP. INN. SHDN	-0.3	VDD+0.3	V
工作温度范围		-40	85	°C
工作结温范围		-40	150	°C
储存温度范围		-65	150	°C
最小负载阻抗		4		Ω
HBM ESD		4000		V
MM ESD		20	00	V
θ JA ESOP16		50		°C/W

注:如果器件工作条件超过上述极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况,器件长时间工作在极限条件下,其可靠性及寿命可能受到 影响。


7 功能框图

8 典型电路及测试方法


单端模式:

差分模式

测试方法:

注:测试 D 类时必须加低通滤波器,一般由 33uH 电感和 1uF 电容构成。为减小功率损耗和干扰噪声,让测试数据更加精准,测试 NS4820 时可选用电阻电容做滤波器,电阻值选 500Ω , 电容值选 10nF。

9 电气特性

工作条件(除非特别说明): Ta=25℃, VDD=3.6V

参数		测试状态	最小	典型	最大	单位
工作电压	V _{DD}		3		5	V
关断电流	I _{SD}			0.1	1	μА
关断时间	T _{OFF}		100		500	μS
过温保护	T _{OVP}			155		$^{\circ}$
		一线脉冲参数				
高电平幅度	Vsdih		0.3		V_{DD}	V
低电平幅度	VSDIL		0		0.35	V
高电平时间	Tsdih		1		10	μS
低电平时间	Tsdil		1		10	μS
		电荷泵升压器				
输出电压	V _{OVP}		5.6	5.9	6.2	V
输出调节电压	P_{VDD}	No Load, VDD*1.5 < VOVP		1.5*VDD		V
制山州 17 七/上	FVDD	No Load,VDD*1.5 > VOVP		Vovp		V
开关频率	F _{CP}			1.02		MHz
CP 导通电阻	Roncp	V _{DD} =3.8V,L _{OUT} =0.9A		1.2		Ω
		功率放大器				
待机电流	IQ			12.5		mA
开机时间	T _{ON}			41.25		ms
输出失调电压	Vos		-20		20	mV
开关频率	F _{PA}			767		kHz
输入阻抗	R _{IN}			16.6k		Ω
频率响应		BW=20Hz-20kHz	-0.3		0.3	dB
输出噪声电压	V _N			115		μV

www. yxd163. com

_	丁 ナゴレン				
	输出阻抗	Zo	SHDN=0	10k	Ω

于翔达							
		V _{DD} = 4.2V,Po= 1 W,	R_L = 4Ω + 33μ H	73.8			
电荷泵+功放整体	η	V_{DD} = 3.8V, P_{O} = 0.8 W, R_{L} = 4 Ω +33 μH		75.6		%	
效率		$V_{DD} = 3.3V, P_{O} = 0.6 W$	75.7				
		V _{DD} = 4.2V, V _{ripple} =	200mVpp				
电源纹波抵制比	PSRR	217Hz		-80		dB	
		1kHz		-78			
		10kHz		-60			
		V _{DD} = 3.6V, V _{ripple} =	200mVpp				
电源纹波抵制比	PSRR	217Hz		74		dB	
		1kHz		-70			
		10kHz		-52			
		THD+N=1%,f=1kHz,					
		R _L =8Ω+33μH		1.98			
		R _L =6Ω+33μH		2.4			
	\/DE : : ::	R _L =4Ω+33μH		3.08		,	
	VDD=4.2V	THD+N=10%,THD+N:	=1%,f=1kHz,			W	
		R _L =8Ω+33μH		2.38			
Po		R _L =6Ω+33μH		2.8			
10		R _L =4Ω+33μH	3.55				
输出功率		·					
		THD+N=1%,f=1kHz,					
		$R_L=8\Omega+33\mu H$		1.62			
		$R_L=6\Omega+33\mu H$		1.95		W	
	\/ 2.0\/	R _L =4Ω+33μH		2.48			
	V _{DD} = 3.8V	THD+N=10%,THD+N=1%,f=1kHz,					
		R _L =8Ω+33μH		1.93			
		R _L =6Ω+33μH		2.3			
		R _L =4Ω+33μH		2.87			
		THD+N=1%,f=1kHz,					
		R _L =8Ω+33μH		1.21			
		$R_L=6\Omega+33\mu H$		1.4			
	V _{DD} = 3.3V	R _L =4Ω+33μH		1.81		W	
		THD+N=10%,THD+N=1%,f=1kHz,					
		$R_L=8\Omega+33\mu H$		1.43			
		R _L =6Ω+33μΗ		1.7			
		R _L =4Ω+33μΗ		2.1			
			R _L =8Ω+33μH	1.5			
AGC 输出功率	Poagc	V _{DD} =4.2V,Mode=1	R _L =6Ω+33μH	2		W	
			R _L = 4Ω+33μH	3			
AGC 启动时间	T _{ATK}	$V_{DD} = 3.8V$, Mod	e=1,V _{IN} =1.5Vp	36		ms	
AGC 释放时间	T _{REL}			1		S	
AGC 增益步长		Voltage Step		0.5		dB	

www. yxd163. com

最大增益衰减			-13.5	dB	ı
信噪比	SNR	Po=1W	90	dB	ı

Total Efficiency vs Output Power 100% 90% 80% 70% Efficiency - % 60% 50% V_{DD}=4.2V 40% V_{DD}=3.8V V_{DD}=3.3V 30% f_{IN}=1kHz 20% $R_L=8\Omega+33\mu H$ 10% 0% 0.5 1.5 2.5 Po-W

11 应用说明

11.1 工作模式设置

图 1

11.2 产品特性描述

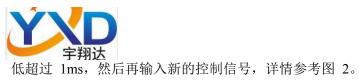
NS4820 是一款集成了电荷泵转换器的高效 G 类音频功放。

全差分放大

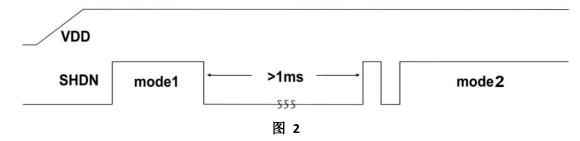
由于无输出滤波器的调制结构减少了外部元件的数量,减小了电路板的面积,因此降低了整体成本。 当没有输入信号时,正负输出端同相输出 50%占空比的方波,输出互相抵消,所以扬声器负载上没有电压, 因此空闲状态下没有电流流过负载。当有信号输入时,占空比会发生改变,对于上升的输出电压,VOP 占空 比增加,VON占空比降低。对于下降的输出电压则相反。两个不相等的输出方波产生了差分的输出信号。

NS4820 是一款带差分输入和输出的全差分放大器,差分输出电压等于差分输入电压乘以增益。NS4820 可以用作单端输入,但是在噪音明显的环境下,例如无线对讲机,差分输入可以保证良好的系统噪音抑制。

电荷泵升压转换器


NS4820 内置一个 1.5 倍电荷泵转换器。这个转换器可以将电源电压 VDD 升压输出更高的电压 PVDD, 给功率输出级供电。通常超过 5.9V 时,过压保护电路会启动,以保护 PVDD 不超过最大允许工作电压。

一线脉冲控制


NS4820 使用一线脉冲控制工作模式,用户可以通过在 SHDN 管脚上输入脉冲信号来选择模式,详情参 考图 1。

模式切换时序

为了避免进入错误的状态,NS4820 应先上电再输入控制信号。当需要切换工作模式时,SHDN 应先拉www. vxd163. com

自动增益控制

AGC 功能可以通过一个内部的PGA 保证对放大器的自动增益调节,芯片持续检测输出,调整放大器信号通路上的增益。这个功能可以感知音量信息,避免出现喇叭音量过载。增益以 0.5dB 的电压梯度 (1dB 的功率梯度)随着音频信号变化,当信号幅度稳定,增益不会变化。长期大功率工作状态下,AGC 功能有效延长了喇叭的寿命。图 3 展示了 AGC 功率的定义。

11.3 电源去耦电容

NS4820 是一款高性能的 G 类音频功放,因此需要对电源进行去耦以提高效率和降低 THD。需要在离 VDD 管脚尽量近的地方,放置一个低 ESR 的 470μF 电解电容以保证最好的效果,因为任何电容和芯片之间 连线的寄生电感和电阻会降低工作效率。同时为了滤除高频噪声信号,需要放置一个 0.1μF 的电容。

11.4 电荷泵充电电容

电荷泵充电电容用于在电源和电荷泵负载之间传递能量,其值直接影响电荷泵的负载调整率和输出能力,过小的充电电容会影响电荷泵的负载调整率和输出能力,从而影响功放的输出功率。电荷泵充电电容越大,负载调整率和驱动能力越强。建议选用 2.2uF/10V,低 ESR 的 X7R、X5R 陶瓷电容。

11.5 电荷泵保持电容 CPVDD

保持电容 C_{PVDD} 的 ESR 值会显著影响 PVDD 的纹波,增加这个电容值会降低纹波而减小电容值会增加纹波。建议选用 $470\mu F/10V$ 的电解电容。

11.6 磁珠滤波器

当电路敏感频率超过 1MHz,没有LC 滤波器导致系统无法通过 EMI 测试,可以使用一个磁珠滤波器。该滤波器可以通过 FCC 和 CE 测试,因为两者只测试 30MHz 以上的放射干扰。可以选择一个高频时高阻抗和低频时低阻抗的磁珠,而且有足够电流能力驱动负载。如果低于 1MHz 的 EMI 敏感电路或者喇叭到芯片有较长导线,可以选用 LC 滤波器。使用时确保磁珠尽量靠近 VOP 和 VON 管脚。

11.7 输入电阻

NS4820 内部有一个 16.6kΩ的输入电阻,因此增益计算公式如下:

$$A_V = \frac{320k}{R_{in} + 16.6k}$$

输入电阻应尽量接近 INN 和 INP 管脚以减小高阻抗节点的噪声影响。

11.8 输入电容

输入电容和输入电阻构成高通滤波器,转折频率公式为:

$$f_C = \frac{1}{2\pi \cdot (R_{in} + 16.6k) \cdot C_{in}}$$

输入电容和输入电阻构成高通滤波器,截止频率为 fc=1/[2 π × (Ri + 16.6k)×Ci]。过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

11.9 PCB 布局建议

为充分发挥 NS4820 芯片的性能, PCB 设计必须仔细考虑, 尽量遵循以下原则:

- 1. 电源线长宽比尽量小,必须单独走线,布线短而粗,宽度大于 0.75mm,去偶电容必须以最近距离靠近 IC 电源管脚。
- 2. 升压电容 C1, C2 尽可能靠近 IC, 走线短而粗, 如有过孔, 必须保证过孔的电流强度。PVDD 的电容 尽量靠近芯片的 PVDD 脚。
 - 3. 信号输入电容电阻靠近芯片的正负输入端,并且要平行布线。
- 4. 功率输出端磁珠尽可能靠近 IC 正负输出端,磁珠后要紧接接地的电容,必须保证电容充分接地,输出线宽大于 0.5mm。

12 封装信息

ESOP16