

NS4150 3.0W 单声道 D 类音频功率放大器

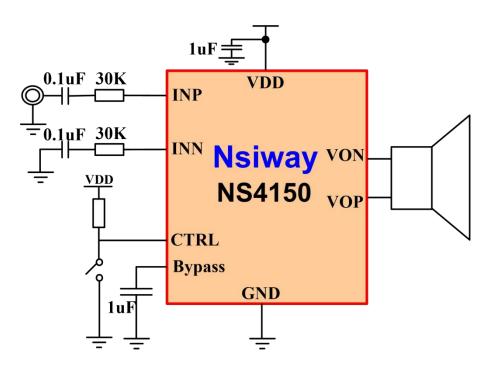
1 特性

- 工作电压范围: 3.0V~5.0V
- 输出功率: 3W(5V/4Ω,THD=10%)
- 0.1%THD (0.5W/3.6V)
- 高达 90%的效率
- 高 PSRR: -80dB (217Hz)
- 无需滤波器 Class-D 结构
- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 低静态电流: 3mA(3.6V电源、No load)
- 过流保护、过热保护、欠压保护
- SOP8 封装

2 应用范围

- MP3/PMP
- Mini 音箱
- 数码相框

3 说明

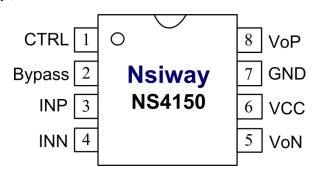

NS4150 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。NS4150 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

NS4150 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。 并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合于便携式音频产品。

NS4150 无需滤波器的 PWM 调制结构及增益 内置方式减少了外部元件、PCB 面积和系统成本。

NS4150提供 SOP8 封装,额定的工作温度范围为-40℃至 85℃。

4 典型应用电路

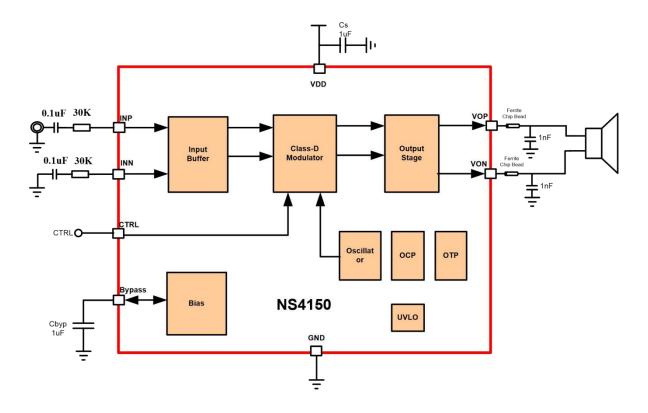


www. yxd163. com

5 管脚配置

SOP-8 的管脚图如下图所示:

编号	管脚名称	管脚描述
1	CTRL	工作模式控制,低电平时 Shutdown
2	Bypass	内部共模电压旁路电容
3	INP	正相音频输入
4	INN	反相音频输入
5	VoN	反相音频输出
6	VCC	电源输入
7	GND	地
8	VoP	正相音频输出

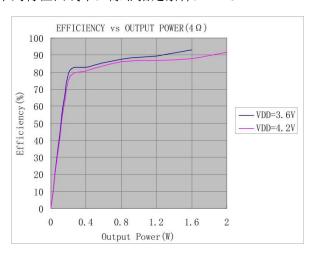

6 极限工作参数

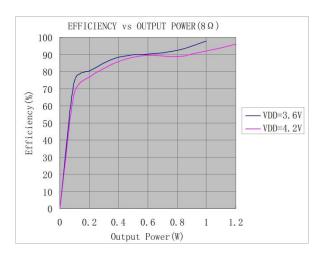
参数	最小值	最大值	单位	说明
电源电压 VDD	-0.3	5.0	V	
INP/INN/CTRL PIN	-0.3	VDD+0.3		
储存温度	-65	150	°C	
耐 ESD 电压	±4000		V	
结温		150	°C	
推荐工作温度	-40	85	°C	
推荐工作电压	2.2	5.25		
	热阻	l		
θ _{JC} (SOP-8)		150	°C/W	
Latch up		±150	mA	
焊接温度		220	°C	15 秒内

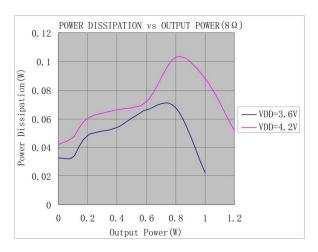
注:超过上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影响芯片的可靠性和寿命。

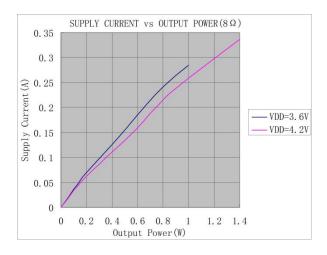
7 结构框图

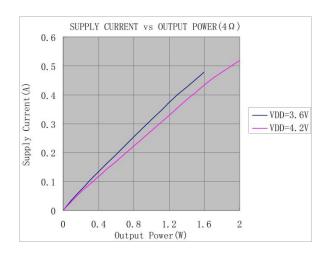
8 电气特性

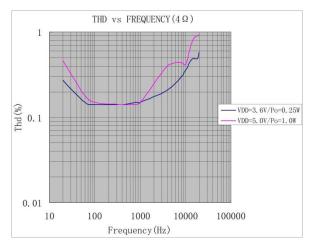

工作条件(除非特别说明): T=25℃, VDDB=4.8V。

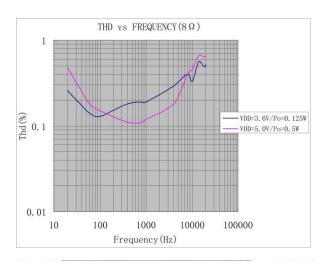

符号	参数	测试条件	最小值	标准值	最大值	单位
VDD	电源电压		3.0	4.8	5.0	V
IDD	电源静态电流	VIN=0V,VDD-3.6V,No Load		3.0		mA
ISD	关断漏电流	VDD =3.6V,CTRL=0V		0.1	10	μА
VOS	输出失调电压	VIN=0V,VDD =3.0V to 5.25V		5	20	mV
f _{sw}	调制频率	VDD =3.0V to 5.25V		400		kHz
PO	输出功率	THD=1%,f=1KHz,VDD=5V RL=4 Ω RL=8 Ω		2.0 1.3		W
		THD=10%,f=1KHz,VDD=5V RL=4 Ω RL=8 Ω		2.8 1.7		W
THD+N	总失真度+噪声	VDD =3.6V,Po=0.1W, RL =8Ω ,f=1kHz		0.15		%
		VDD =3.6V,Po=0.5W, RL=4Ω ,f=1kHz		0.10		%
PSRR	电源抑制比	217Hz 20KHz		-80 -72		dB
CMRR	共模抑制比			-70		dB
η	效率	Po=0.6W,RL =8Ω, VDD=3.6V,f=1kHz		90		%
VIH	CTRL 输入高电平		1.2		VDD	V
VIL	CTRL 输入低电平		0		0.2	V
Tst	启动时间			120		ms
Twk	唤醒时间		35			ms
Tsd	关断时间		80			ms

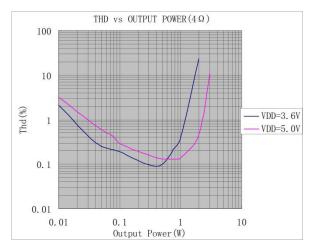


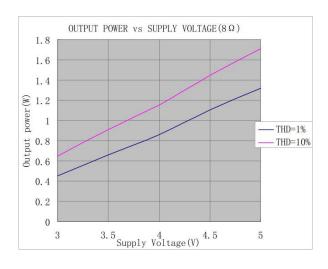

9 典型特性曲线

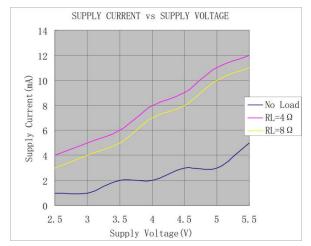

下列特性曲线中,除非指定条件,T=25℃。

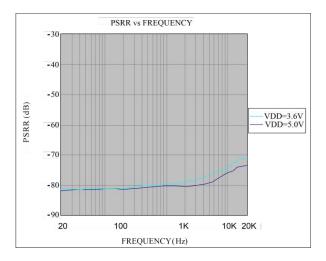


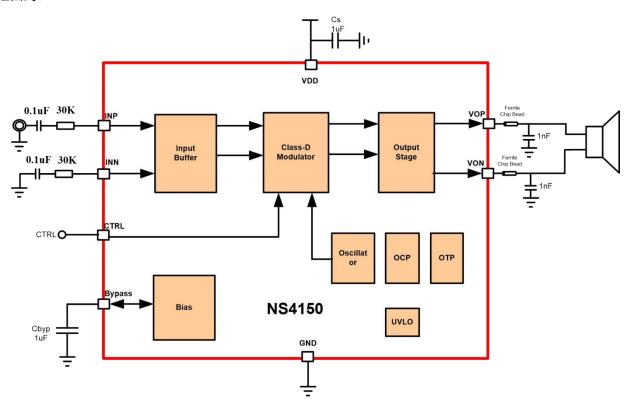











10 应用说明

10.1 芯片基本结构描述

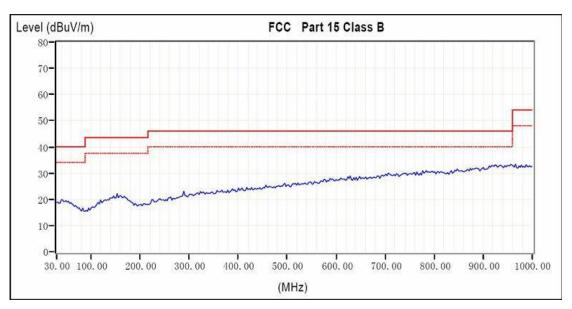
NS4150 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。在 5V 电源下,能够向 4Ω 负载提供 3W 的功率,并具有高达 90%的效率。

NS4150 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的 影响。

NS4150 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件数目、PCB 面积和系统成本,利用扩展频谱技术充分优化全新电路设计。芯片内置过流保护、过热保护和欠压保护功能,在异 常工作条件下关断芯片,有效地保护芯片不被损坏,当异常条件消除后,NS4150 自动恢复工作。其原理框图为:

10.2 无需输出滤波器

NS4150 采用无需输出滤波器的 PWM 调制方式,省去了传统 D类放大器的 LC 滤波器,提高了效率,提供了一个更小面积,更低成本的实现方案。


10.3 上电, 掉电噪声抑制

NS4150 内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能 出现的瞬态噪声。

10.4 EMI 增强技术

NS4150 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示:

10.5 CTRL 引脚设置

通过设置 CTRL 引脚的电平值,可以设置 NS4150 的工作模式,如表 4 所示:

CTRL Mode

H Open

L Shutdown

表 1 CTRL 工作模式

10.6 效率

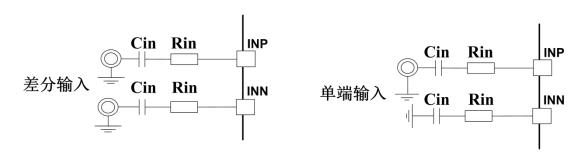
NS4150 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。最高可达 90% (NS4150)的效率更加适合于便携式音频产品。

10.7 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4150自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,NS4150继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

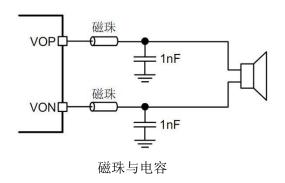
10.8 电源去耦电容

电源端加适当的去耦电容可以确保器件的高效率及最佳的 THD 性能, 同时为得到良好的高频瞬态性能,希望电容的 ESR 值要尽量小。一般使用 1uF 的陶瓷电容将 V_{DD} 旁路到地。去耦电容在布局上应尽可能的靠近芯片的 V_{DD} 放置。如果希望更好地滤除低频噪声,则需要根据具体应用添加一个



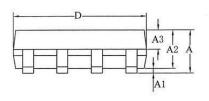
10.9 增益设置和输入电阻

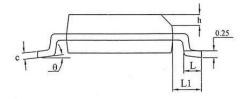
NS4150 内部集成反馈电阻为 300k,增益 $A_{VD}=rac{300K\Omega}{Rin}$ (NS4150), Rin 为外接输入电阻。

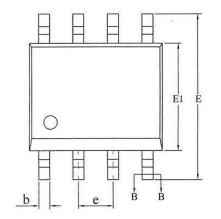

10.10 输入滤波器

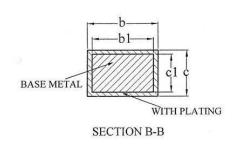
音频信号通过隔直电容和输入电阻输入到 NS4150 的 INP 与 INN。输入电容 Cin 与输入电阻 Rin 构成一个高通滤波器。截止频率为 $fc=\frac{1}{2\pi\,Rin\cdot Cin}$ 。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 POP噪声出现,因此,小的耦合电容可以减少该噪声。

10.11 磁珠与电容


NS4150 在没有磁珠、 电容的情况下, 对 60cm 的音频线,仍可满足 FCC 标准要求。在输出音频线过长或器件布局靠近 EMI 敏感设备时,建议使用磁珠、电容。磁珠及电容要尽量靠近芯片放置。




11 封装信息


11.1 SOP-8 封装尺寸图

SYMBOL	MILLIMETER			
SIMBOL	MIN NOM		MAX	
Α	-	-	1.75	
A1	0.10	_	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	_	0.48	
bl	0.38	0.41	0.43	
c	0.21	_	0.26	
cl	0.19	0.20	0.21	
D	4.70	4.90	5.10	
Е	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
e	1.27BSC			
h	0.25	_	0.50	
L	0.50	_	0.80	
LI	1.05BSC			
9	0	_	8°	
L/F载体尺寸 (mil)	60*60		95*130	
	80*8	0 1	112*169	
	90*9	0 10	100*158	
	80*112(双载体)			

