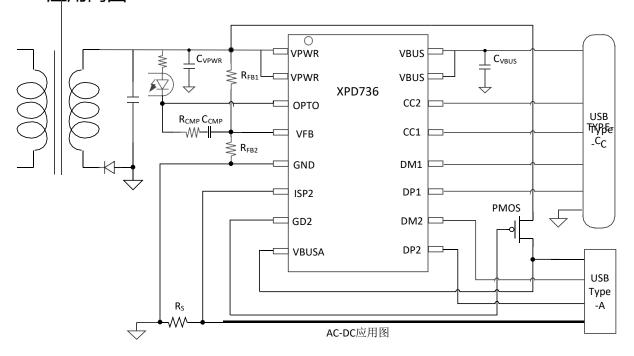
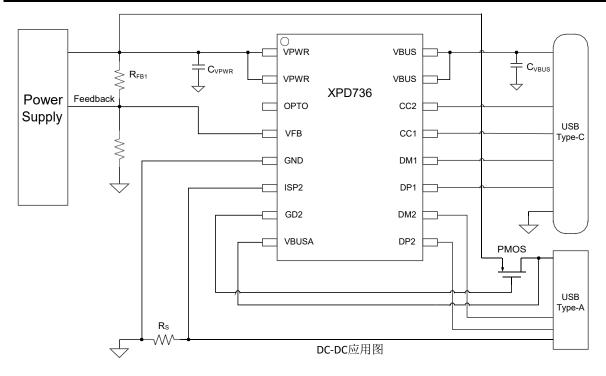


USB Type-C PD 和 Type-A 双口控制器

1 特性


- 通过USB PD3.0 认证 (TID: 3479)
- 支持USB Type -C 协议
 - 配置为 DFP (Source)
 - 广播 3A/1.5A 电流
- 支持USB Power Delivery (PD) 2.0 和 3.0 以及PPS 协议
 - 集成完整PD 分层通信协议
 - PDO 可配置: 5V, 9V, 12V, 15V
 - 输出功率高至 45W
 - APDO 可配置: 5V Prog, 9V Prog, 15V Prog
- 支持Quick Charge 3.0/2.0 协议
- 支持华为FCP/SCP 协议
- 支持三星AFC 协议
- 支持USB BC1.2 DCP
- 支持Apple 2.4A 充电规范
- 集成恒压 (CV) 环路控制
- 集成 VBUS 通路低阻抗功率开关管

- 内置VPWR 和VBUS 双放电通路
- 支持线损补偿功能
- 支持USB Type-A 和Type-C 双口工作模式
 - 独立工作都有快充, 同时工作回 5V
 - A 口连接苹果充电线但未接入苹果手机时, C 口仍然有快充
- A 口充饱关断电流阈值 10mA, 小电流充电
- 安全性
 - 过压/欠压保护
 - 过流保护
 - 过温保护
- CC1/CC2/DP1/DM1/DP2/DM2 过压保护
- ESD 特性± 4KV
- Package: TSSOP-16


2 应用

- AC-DC 话配器
- 带 USB 端口排插
- USB 充电设备

3 应用简图

USB Type-C PD 和 Type-A 双口控制器

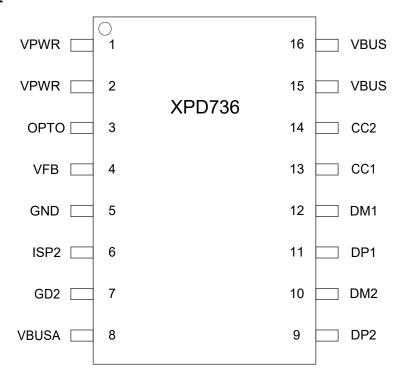
4 概述

XPD736 是一款集成 USB Type-C、USB Power Delivery(PD)2.0/3.0 以及 PPS、QC3.0/2.0 CLASS A 快充协议、华为 FCP/SCP 快充协议、三星 AFC 快充协议、BC1.2 DCP 以及苹果设备 2.4A 充电规范的多功能 USB Type-C 和 Type-A 双端口控制器。

XPD736 内置的 Type-C 协议可以支持 Type-C 设备插入自动唤醒,智能识别插头的正插与反插,并实现连接。XPD736 集成的 PD 协议支持双向标记编码(BMC),集成硬件的物理层协议和协议引擎,无需软件参与编解码。

当 Type-C 和 Type-A 其中一个端口接入设备时,Type-C 或 Type-A 端口都可以实现独立的快充功能。当 Type-C 和 Type-A 都接入设备时,XPD736 会将输出电压降至 5V 给设备供电。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时,Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。XPD736 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。此外,Type-A 口充饱关断电流阈值低至 10mA,可支持智能穿戴设备小电流充电。

XPD736 通过一路可 Sink/Source 的电流源,连接到 AC-DC 或 DC-DC 的反馈引脚实现 动态调节电压。不管是启动还是调压过程,都具备软启动功能,实现电压平顺过渡。


XPD736 内建多种保护机制确保设备安全:包括动态过压/欠压/过流保护(可根据设备请求的工作电压/电流按照比例调整保护点);启动监测(VBUS 输出前会监测端口电压是否处于安全状态)。

XPD736 集成 20mΩ VBUS 通路功率开关管,内置 VPWR 和 VBUS 双放电通路,节省了外围器件,在发生错误时可以快速关闭输出并恢复到安全状态。

XPD736 采用 TSSOP16 封装,外围简洁,很容易通过 USB PD 认证测试。

USB Type-C PD 和 Type-A 双口控制器

5 引脚定义

引脚序号	名称	描述		
1/2	VPWR	输入电源		
3	ОРТО	光耦驱动		
4	VFB	电压调节端口 (接到系统电压反馈点)		
5	GND	电源地		
6	ISP2	Type-A 口电流检测端口		
7	GD2	Type-A 口电源通路上 PMOS 开关驱动		
8	VBUSA	Type-A 口输出电源		
9	DP2	Type-A □ DP		
10	DM2	Type-A □ DM		
11	DP1	Type-C □ DP		
12	DM1	Type-C □ DM		
13	CC1	Type-C 检测引脚 CC1		
14	CC2	Type-C 检测引脚 CC2		
15/16	VBUS	VBUS 输出		

USB Type-C PD 和 Type-A 双口控制器

6 订购信息

料号	USB Type-C 端口 PDO 和 APDO 配置	印字	封装
XPD736B18	PDO : 5V/3A, 9V/2A, 12V/1.5A		
XPD736B18U	PDO:5V/3A,9V/2A,12V/1.5A A 口支持 SCP:4.5V/5A,5V/4.5A		
XPD736A20	PDO : 5V/3A, 9V/2.25A		
XPD736B20	PDO: 5V/3A, 9V/2.25A, 12V/1.5A		
XPD736B21	PDO : 5V/3A, 9V/2.25A, 12V/1.75A		
XPD736B36	PDO : 5V/3A, 9V/3A, 12V/3A		
XPD736C36	PDO : 5V/3A, 9V/3A, 12V/3A, 15V/2.5A		
	PDO : 5V/3A, 9V/2A, 12V/1.5A	XPD736	TCCOD4.C
XPD736BP18	APDO1: 3.3-5.9V/3A	XXXXX+XX	TSSOP16
	APDO2: 3.3-11V/1.65A		
	PDO : 5V/3A, 9V/2.75A		
XPD736APS25	APDO1: 3.3-5.9V/3A		
	APDO2:3.3-11V/2.75A	_	
XPD736CP30	PDO : 5V/3A, 9V/3A, 12V/2.5A, 15V/2A APDO1 : 3.3-11V/3A		
XI D730CI 30	APDO1: 3.3-11V/3A APDO2: 3.3-16V/2A		
XPD736C45	PDO : 5V/3A, 9V/3A, 12V/3A, 15V/3A	-	
	PDO : 5V/3A, 9V/3A, 12V/3A, 15V/3A		
XPD736CP45	APDO1: 3.3-11V/3A		
	APDO2: 3.3-16V/2.8A		
可定制	可定制		

印字说明:

第一行, XPD736: 芯片型号;

第二行,XXXXX: Lot Number, XX: 版本信息。

以上料号 A 口默认不开启 SCP(XPD736B18U除外),如需要支持 SCP,下单时需提前说明。

USB Type-C PD 和 Type-A 双口控制器

选型参考

	QC3.0	FCP/SCP	AFC	PD3.0	PPS	CV	A+C	SR	SR MOS	XPD-LINK
XPD618	√	~	√	√						
XPD636	√	~	√	√			√			
XPD718	√	√	√	√	√	√				
XPD736	√	√	√	√	√	√	√			
XPD737	√	√	√	√	√					√
XPD767	√	√	√	√	√		√			√
XPD818	√	~	√	√		√		√	√	
XPD819	√	√	√	√		√		1	√	
XPD865	√	√	√	√		√		√		

USB Type-C PD 和 Type-A 双口控制器

7 规格参数

7.1 极限工作参数(1)

参数		最小值	最大值	单位
耐压值	VPWR, VBUS, VBUSA, CC1, CC2, DP1, DM1, DP2, DM2, OPTO	-0.3	24	V
	其他	-0.3	7	V
结温		-40	150	
存储温度		-65	150	

⁽¹⁾ 超出极限工作范围值可能会造成器件永久性损坏。长期工作在极限额定值下可能会影响器件的可靠性。

7.2 ESD 性能

符号	参数	值	单位
V _{ESD}	нвм	±4000	V

ESD 测试基于人体放电模型(HBM)。

7.3 推荐工作条件

参数		最小值	典型值	最大值	单位
VPWR	输入电压	3.6		16	V
C _{VBUS}	VBUS 电容	2.2		10	μF
C _{VPWR}	VPWR 电容	4.7	10		μF
R _{FB1}	系统电压分压电阻		100		kΩ
R _{FB2}	系统电压分压电阻		33		kΩ
R _S	Type-A 口电流检测电阻		10		mΩ
T _A	工作环境温度	-40		85	

7.4 热阻值

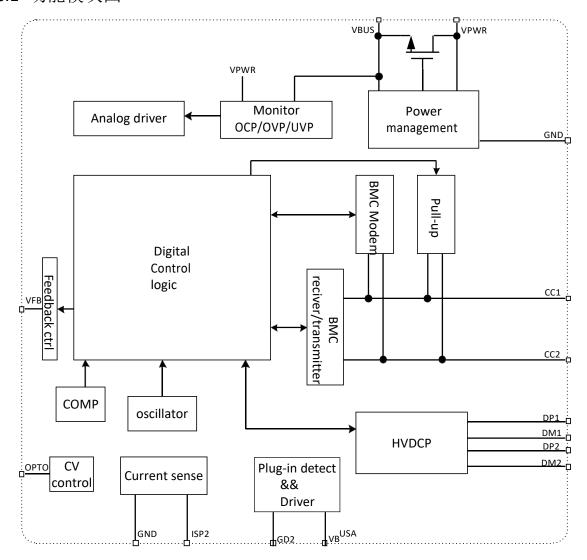
符号	参数	值	单位
$R_{\theta JA}$	结温和周围温度之间的热阻(1)	100	
R ₀ JCtop	结温和封装外壳表面温度之间的热阻	36	/W
$R_{\theta JB}$	结温和板温度之间的热阻	45	

USB Type-C PD 和 Type-A 双口控制器

7.5 电气特性

如无特殊说明,下述参数均在该条件下取得: T_i= 25℃, 3.3V≤VPWR≤16V

	参数	测试条件	最小	典型	最大	单位
		芯片供电相关(VPWR,VBUS)				
		Rising edge		3.3		
V_{VPWR_TH}	VPWR UVLO 门限	Falling edge		2.9		V
_		Hysteresis		0.4		
I _{SUPP}	典型工作电流	VPWR=5V, VBUS=5V		2		mA
		Voltage Protection (VBUS)		•		•
V _{FOVP}	Fast OVP 门限, always enabled	Ref to target voltage		+20%		V
V _{SOVP}	Slow OVP 门限	Ref to target voltage		+15%		V
V _{SUVP}	VBUS UVP 门限	Ref to target voltage		-22%		V
		Switch MOSFET		•		
R _{DSON}				20		mΩ
		Transmitter (CC1, CC2)				
R _{TX}	Output resistance	During transmission		50		Ω
V _{TXHI}	Transmit HIGH			1.15		V
V _{TXLO}	Transmit LOW		-75		75	m٧
t _{UI}	Bit unit interval			3.3		us
t _{BMC}	Rise/fall time of BMC	R _{load} =5.1k,C _{load} =1nF	300		600	ns
		Receiver (CC1, CC2)				
V _{RXHI}	Receive HIGH		800	840	885	m\
V _{RXLO}	Receive LOW		485	525	570	m۷
	CC1/CC2	3A DFP mode, 0	304	330	356	uA
I _{RP_SRC}	Broadcasting current	1.5A DFP mode, 0	166	180	194	uA
		ОСР				
V _{ITRIP}		Ref to Power Capability(pd)		+30%		А
		OTP (internal)		1		
_		Temperature rising edge	135	145	155	$^{\circ}$
T_{J1}	Die temperature	Hysteresis		20		$^{\circ}$
		HVDCP interface (DP, DM)		1		
V _{DAT(REF)}	数据线检测电压		0.25	0.325	0.4	V
V _{SEL(REF)}	输出电压选择		1.8	2	2.2	V
T _{GLITCH(DP)HIGH}	D+高电平扰动滤 波时间		1	1.25	1.5	s
T _{GLITCH(DM)LOW}	D-低电平扰动滤 波时间			1		ms
T _{GLITCH(V)CHANGE}	输出电压扰动滤 波时间		20	40	60	ms

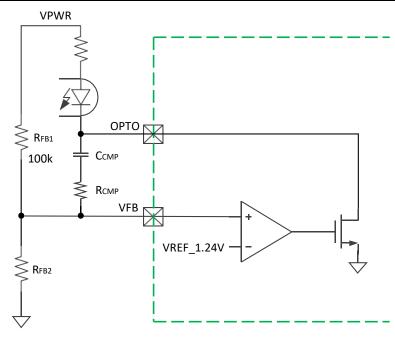

USB Type-C PD 和 Type-A 双口控制器

T _{GLITCH} (CONT)CHANGE	连续模式的扰动 滤波时间		100	150	200	us
R _{DAT(LKG)}	D+漏泄电阻		300	500	800	ΚΩ
R _{DM(DWN)}	D-下拉电阻		14.25	19.53	24.5	ΚΩ
R _{ON(N1)}	开关N1 导通电 阻			40	100	Ω
V _{TH(PD)}	受电设备连接检 测电压阈值		0.25	0.325	0.4	V
TD _{PD}	受电设备连接检 测滤波时间		120	160	200	ms
$\Delta I_{T(UP)}$	电压升高时电流 源阶跃步长	R _{IREF} =100KΩ		2		uA
$\Delta I_{T(DO)}$	电压降低时电流 源阶跃步长	R _{IREF} =100KΩ		2		uA
		Apple 2.4A 充电模式				
V _{DAT(2.7V)}	D+/D-数据线电压		2.57	2.7	2.84	V
R _{DAT(2.7V)}	D+/D-数据线输出 阻抗			15		ΚΩ
		FCP 充电模式				
V _{TX-VOH}	D- FCP TX Valid High			2.7		V
V _{TX-VOL}	D- FCP TX Valid Low				0.3	V
V _{RX-VIH}	D- FCP RX Valid High			1.2		V
V _{RX-VIL}	D- FCP RX Valid High			0.9		V
Trise	FCP Pulse Rise Time	10% - 90%			2.5	us
Tfall	FCP Pulse Fall Time	90% - 10%			2.5	us

8 应用信息

8.1 功能模块图

Copyright©2019, 云矽半导体


8.2 VPWR、VBUS 和 VBUSA

VPWR 是 USB Type-C 口 VBUS 和 USB Type-A 口 VBUSA 的输入电源,也是芯片的供电电源。VPWR 连接前级 AC-DC 或者 DC-DC 的电源输出端。建议靠近VPWR 接对地电容 C_{VPWR},推荐 C_{VPWR} 典型值为 10μF。根据 USB 组织要求,Type-C 口 VBUS 需要接对地电容 C_{VBUS},C_{VBUS} 值不能大于 10μF。Type-A 口 VBUSA 可以根据应用需求接对地电容。

8.3 恒压环路与OPTO、VFB

XPD736 内部集成恒压运算放大器,通过 OPTO 和 VFB 形成恒压环路(CV),如下图 所示。OPTO 端口直接驱动光耦,可以省掉传统的 TL431。OPTO 可以耐压至 24V。

USB Type-C PD 和 Type-A 双口控制器

恒压环路(CV)需要在外部进行补偿,补偿电阻 R_{CMP} 和补偿电容 C_{CMP} 由具体应用决定。VFB 内部的基准电压为 1.24V。VPWR 上的反馈电阻网络的分压电阻 R_{FB1} 必须接 100 $k\Omega$ 。

如果初始输出电压设定为 5V,则另一个分压电阻 R_{FB2} 为 33k。可通过下面公式计算得到:

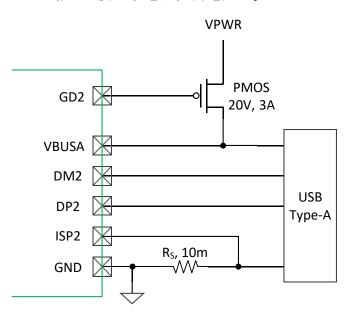
通过调整 RFB2 的值可以改变初始输出电压。

反馈电阻网络的分压电阻 R_{FB1} 和 R_{FB2} 的精度影响 VBUS 电源精度,推荐使用 1%精度电阻。

8.4 电流检测

XPD736 有两路电流检测电路,分别对应 USB Type-C 口和 Type-A 口。Type-C 口电流检测完全内置,过流保护点默认为 PDO 广播电流的 130%。

Type-A 口通过外部 10mΩ 采样电阻检测电流。10mΩ 电阻对应的充饱关断电流阈值为 10mA,当 A 口设备抽电小于 10mA 时会断开A 口电源。如果需要进一步调低充饱关断电流阈值,可以使用 20mΩ 采样电阻,对应的 A 口充饱关断电流阈值为 5mA。Type-A 口过流保护点可以根据具体应用需求配置。10mΩ 采样电阻需采用开尔文连接,一端为 ISP2,另一端为芯片的 GND。


8.5 线损补偿

XPD736 具有线损补偿功能,可以根据输出电流按比例(即补偿系数)增加输出电压。补偿系数可以内部配置。默认情况下,XPD718 的补偿系数配置为 60mV/A,如果前端电源空载时输出电压为 5V,当输出电流为 3A 时,前端电源的输出电压会增加至 5.18V。

8.6 USB Type-C 和 Type-A 双口应用

XPD736 只需要外围简单连接少量元器件,便可以实现 USB Type-C 和 Type-A 双口应用,具体应用电路参考第 9 节。下图单独给出 USB Type-A 口的应用示意图,便于理解 Type-A 口的工作原理。Type-A 口 VBUSA 电源通路上需要 PMOS 作为开关,数据线 DM2、DP2 用于协议通信,GND 通路上连接一个电流检测电阻 R_S。

当 Type-C 和 Type-A 只有其中一个端口接入设备(包括充电线缆)时, Type-C 或 Type-A 端口都可以实现独立的快充功能。

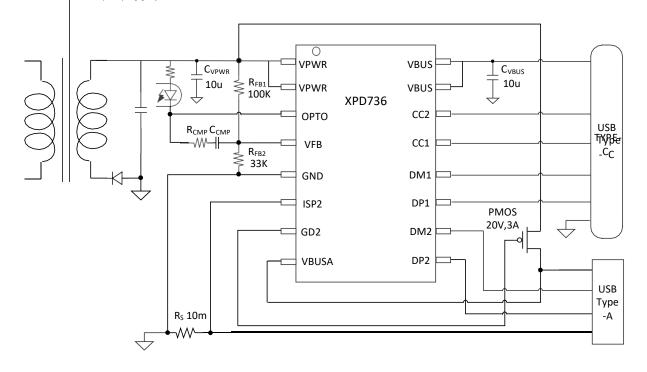
当 Type-C 和 Type-A 都接入设备时,XPD736 会将输出电压降至 5V 给设备供电。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时,Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。XPD736 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。

当 Type-A 口设备充电电流低于充饱关断电流阈值时,VBUSA 断开供电。XPD736 具有 10mA 以内的充饱关断电流阈值,从而可以支持智能穿戴等小电流设备充电。

8.7 可靠性

由于 CC1/CC2/DP/DM 引脚直接连接到 USB 端口,使用过程中容易和电源短路对芯片造成损坏,XPD736 为了增强产品安全可靠性,对 CC1/CC2/DP/DM 引脚的耐压值特别提高到 24V 以上。

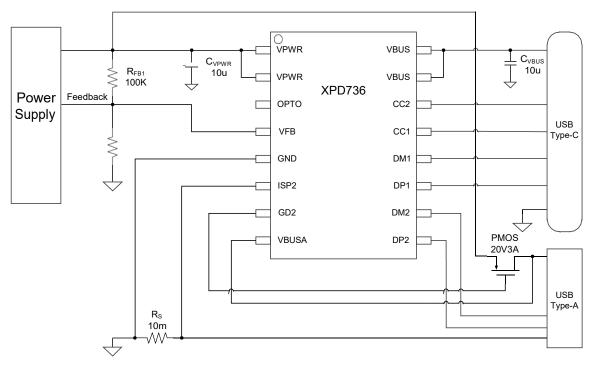
XPD736 具有完备的 OVP/OCP/UVP 保护功能。OVP/OCP/UVP 保护阈值会根据设备选择的电压进行调整,最大限度保护设备安全。


XPD736 内置 VPWR 和 VBUS 能量泄放通路,在特定情况下会开启并分别泄放 VPWR 和 VBUS 电源能量。

XPD736 的芯片结温到达 145℃后会关闭输出,降到 125℃后解除保护重新开始工作。

USB Type-C PD 和 Type-A 双口控制器

- 9 应用电路
- 9.1 AC-DC 应用图



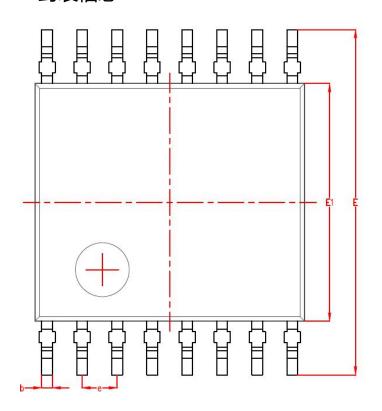
图中所示元器件参数供参考,可以根据实际应用进行调整。

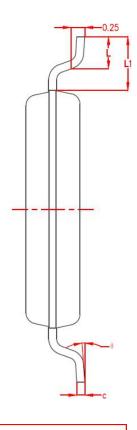
参考 8.3 节内容设置反馈网络分压电阻 R_{FB1} 和 R_{FB2} 的值。根据实际应用电路的环路稳定性设置补偿网络 R_{CMP} 和 C_{CMP} 的值。Type-A 口 VBUSA 通路上的 PMOS 推荐选用耐压值 20V 以上,电流能力 3A 以上。Type-A 口的电流检测电阻 R_S 可以选择 5%精度电阻。

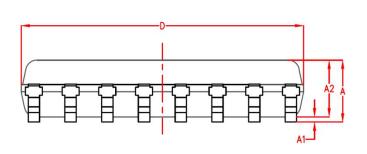
USB Type-C PD 和 Type-A 双口控制器

9.2 DC-DC 应用图

图中所示元器件参数供参考,可以根据实际应用进行调整。


前端电源的反馈电阻网络的分压电阻 R_{FB1} 必须接 100 $k\Omega$ 。Type-A \square VBUSA 通路上的 PMOS 推荐选用耐压值 20V 以上,电流能力 3A 以上。Type-A \square 的电流检测电阻 R_S 可以选择 5%精度电阻。


9.3 PCB layout 注意事项


- 1. 10mohm 采样电阻的走线采用开尔文连接方式,注意芯片管脚 GND 与该电阻的连接时应先连接到电阻末端然后再与整个 PCB 的 GND 网络连在一起,走线尽量粗而短;
- 2. 输入电容 CVPWR 以及输出电容 CVBUS 尽量靠近芯片;
- 3. PCB 布局时尽量避免与主发热器件摆放在一起;
- 4. 尽量避免 VFB 连线受到干扰;
- 5. USB Type-A 口的外壳禁止连接到 PCB 板上的 GND 网络。

10 封装信息

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
A	-	1.09	1. 19		
A1	0.02	-	0. 15		
A2	0. 95	1.00	1.05		
b	0.14	0. 22	0.30		
с	0.08	0. 13	0. 18		
D	4.90	5. 00	5. 10		
Е	6. 20	6. 40	6. 60		
E1	4. 30	4. 40	4. 50		
е	0. 65BSC				
L	0. 50	0.60	0.70		
L1	1.05BSC				
θ	0°	4°	8°		