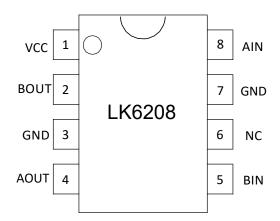


直流马达驱动器

特性


- 低静态工作电流
- 宽电源电压范围: 4.5V-15V
- 每通道连续电流输出能力 (典型值: 100mA)
- 较低的饱和压降
- 输出具有正转、反转、刹车和高阻四种状态
- TTL/CMOS输出电平兼容,可直接连CPU
- 输出内置钳位二极管,适用于感性负载
- 控制和驱动集成于单片IC之中
- 具备管脚高压保护功能
- 工作温度范围: -20℃~+80℃

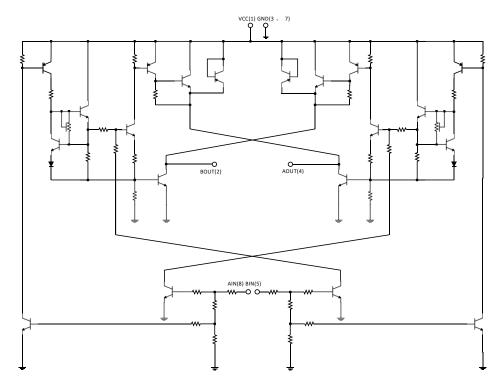
典型应用

• 双向马达驱动

描述

LK6208是为控制和驱动双向马达设计的专用集成电路。该电路输入端兼容TTL/CMOS电平,具有良好的抗干扰性;内部逻辑控制电路可控制双向马达正转、反转和刹车;该电路功率管能通过典型值为100mA的持续电流;该电路内置的钳位二极管能释放感性负载的反向冲击电流。

订购信息


产品型号	封装	工作温度
LK6208	SOP8	-20℃~+80℃

引脚定义

引脚编号	引脚名称	输入/输出	引脚功能描述
1	VCC	-	电源电压
2	BOUT	0	B 路输出管脚
3	GND	-	接地
4	AOUT	0	A 路输出管脚
5	BIN	1	B 路输入管脚
6	NC	-	空
7	GND	-	接地
8	AIN	I	A 路输入管脚

内部线路图

逻辑真值表

AIN	BIN	AOUT	BOUT
Н	L	Н	L
L	Н	L	Н
L	L	Z (高阻)	Z (高阻)
Н	Н	L (刹车)	L (刹车)

绝对最大额定值

(T_A=25℃,除另有规定外)

4) W.	符号		范 围			34 /2.
参数			最 小	典 型	最大	单位
电源电压	VCC		4.5	12	18	V
输出电流峰值	I _{Max}		-	-	0.5	Α
输入高电平	V _{HIN}		1.8	-	-	V
输入低电平	V _{LIN}		-	-	0.8	V
$ heta_{\!\scriptscriptstyle J\!\!A}$ 封装热阻抗 $^{\scriptscriptstyle (1)}$	<i>H</i>	DFN8L	-	-	160	°C/W
		SOP8	-	-	160	°C/W
最高工作结温	TJ		-	-	150	$^{\circ}$ C
焊接温度			-	-	260	℃,10S
储存温度范围	Ts	tg	-65	-	150	$^{\circ}$

注 (1)、最大功耗可按照下述关系计算

$$P_D = (T_J - T_A) / \theta_{JA}$$

T」表示电路工作的结温温度,TA表示电路工作的环境温度。封装热阻的计算方法按照 JESD 51-7。

推荐工作条件

(T_A=25℃,除另有规定外)

参数	符号	条件	范 围			单位
参数	1寸 与		最 小	典 型	最 大	十
电源电压	VCC		4.5	-	15	V
持续输出电流	I _{OUT}	VCC=12V	-	-	0.1	Α
工作温度范围(1)	T _A		-20	-	80	$^{\circ}$ C
功耗 ⁽²⁾	D.	DFN8L	-	-	625	mW
	P _D	SOP8	-	-	625	mW

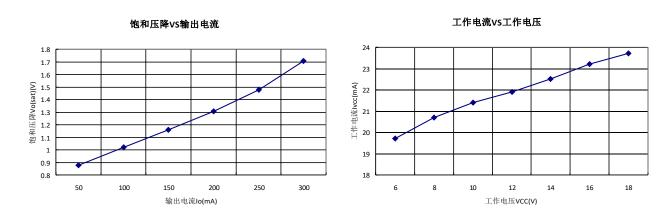
注: (1)、TA表示电路工作的环境温度;

(2)、电路功耗的计算方法为:

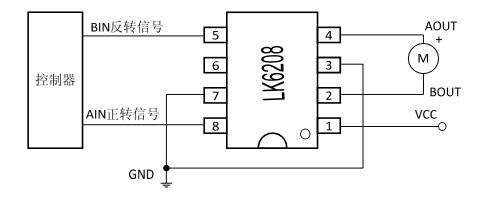
 $P_{D} = I_{OUT} \times V_{O(sat)} + (I_{VCC} - I_{OUT}) \times VCC + V_{IA} \times I_{IA} + V_{IB} \times I_{IB}$

其中 I_{OUT} 表示电路输出电流,也即驱动马达的电流; $V_{O(sat)}$ 表示电路的输出饱和压降; I_{VCC} 表示流入电源端 VCC 的电流;VCC 表示电源端 VCC 的电压; V_{IA} 、 V_{IB} 分别表示输入端 AIN、BIN 的输入电压; I_{IA} 、 I_{IB} 分别表示输入端 AIN、BIN 的输入电流。

为了使电路安全正常工作,必须确保电路功耗在允许的范围之内。

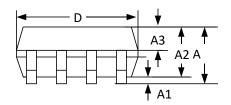

电特性参数表

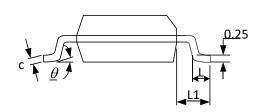
(如无特别说明,VCC=12V, T_A=25℃)


	参数	测试条件	最小值	典型值	最大值	单位
IQ	静态电流	$V_{AIN} = 0$, $V_{BIN} = 0$	-	0.1	2.0	uA
I _{cc}	工作电流(1)	V _{AIN} =5V 或 V _{BIN} =5V 空载	-	22	-	mA
I _{IN}	输入电流	V _{AIN} =5V,V _{BIN} =5V	-	260	500	uA
V _{O(sat}	(2)	I _{OUT} =100mA	-	1.0	1.2	V
Іоит	持续输出电流		-	-	0.1	Α
I _{Max}	输出电流峰值	VCC=12V	-	-	0.5	А

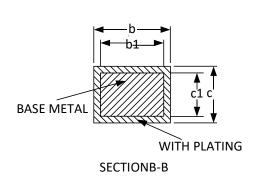
- 注: (1)、工作电流即为空载时电路内部消耗的电流,工作电流越大则电路内部本身消耗的功耗越大,功耗计算公式为: PD= l_{vcc}×VCC;
 - (2)、输出饱和压降为电源电压减去电机两端的电压,即 V_{O(sat)}=VCC-V_M(电机两端电压),饱和压降越大则电路内部本身消耗的功耗越大,功耗计算公式为: PD=l_{OUT}×V_{O(sat)}

典型参数特性曲线


典型应用电路图






封装形式

SOP8:

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
А			1.77	
A1	0.08	0.18	0.28	
A2	1.20	1.40	1.60	
A3	0.55	0.65	0.75	
b	0.39		0.48	
b1	0.38	0.41	0.43	
С	0.21		0.26	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.27BSC			
L	0.50	0.65	0.80	
L1	1.05BSC			
θ	0		8°	